Reduced Rank Approximations of Transition Matrices

نویسنده

  • Juan Lin
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lower Rank Approximation of Matrices by Least Squares with any Choice of Weights

Reduced rank approximation of matrices has hitherto been possible only by unweighted least squares. This paper presents iterative techniques for obtaining such approximations when weights are introduced. The techniques involve criss-cross regressions with careful initialization. Possible applications of the approximation are in modelling, biplotting, contingency table analysis, fitting of missi...

متن کامل

Tensor-Structured Galerkin Approximation of Parametric and Stochastic Elliptic PDEs

We investigate the convergence rate of approximations by finite sums of rank-1 tensors of solutions of multi-parametric elliptic PDEs. Such PDEs arise, for example, in the parametric, deterministic reformulation of elliptic PDEs with random field inputs, based for example, on the M -term truncated Karhunen-Loève expansion. Our approach could be regarded as either a class of compressed approxima...

متن کامل

Low-Rank Approximations with Sparse Factors I: Basic Algorithms and Error Analysis

We consider the problem of computing low-rank approximations of matrices. The novel aspects of our approach are that we require the low-rank approximations be written in a factorized form with sparse factors and the degree of sparsity of the factors can be traded oo for reduced reconstruction error by certain user determined parameters. We give a detailed error analysis of our proposed algorith...

متن کامل

Low Rank Approximation using Error Correcting Coding Matrices

Low-rank matrix approximation is an integral component of tools such as principal component analysis (PCA), as well as is an important instrument used in applications like web search, text mining and computer vision, e.g., face recognition. Recently, randomized algorithms were proposed to effectively construct low rank approximations of large matrices. In this paper, we show how matrices from e...

متن کامل

On higher rank numerical hulls of normal matrices

‎In this paper‎, ‎some algebraic and geometrical properties of the rank$-k$ numerical hulls of normal matrices are investigated‎. ‎A characterization of normal matrices whose rank$-1$ numerical hulls are equal to their numerical range is given‎. ‎Moreover‎, ‎using the extreme points of the numerical range‎, ‎the higher rank numerical hulls of matrices of the form $A_1 oplus i A_2$‎, ‎where $A_1...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003